How Long Does It Take to Learn Trimanual Coordination?

Arnaud Allemang--Trivalle

Jonathan Eden

Ekaterina Ivanova

Yanpei Huang

Etienne Burdet

Picture: Stelarc photographed by K. Oki

Motivation

Traditional

Picture: Curry Health Network, Gold Beach, Oregon

Do you need an extra 'hand'?

Motivation

Traditional

- Miscommunication within a team leads to errors
- Takes time to learn how to work with each new partner
- Difference in views between people

Picture: Curry Health Network, Gold Beach, Oregon

Do you need an extra 'hand'?

Motivation

Traditional

An extra 'hand' is extra

Motivation

Traditional

Augmented

An extra 'hand' is extra

Motivation

Manufacturing

Many applications

Motivation

Many applications

Open Questions

Picture: Sony Pictures, 2004

Open Questions

- •What tasks is augmentation best suited to?
- Can a human user control additional independent degrees of freedom without sacrificing their natural performance?
- How best to train a user to perform augmentation?

Open Questions

Picture: Sony Pictures, 2004

•What tasks is augmentation best suited to?

• Can a human user control additional independent degrees of freedom without sacrificing their natural performance?

 How best to train a user to perform augmentation?

How much training is required to gain trimanual skills?

Experimental Setup

Experimental Setup

Hand/foot interfaces

Experimental Setup

Independent

Dependent

Independent

The 3 cursors must be on the different targets at the same time

Dependent

Dependent

The target must be reached by the cursor COM

Protocol

Independent Task

Independent Task

Performance score

Independent Task

Performance score

• Score improvement from Session 1 to 5

Independent Task

Completion time

- Score improvement from Session 1 to 5
- Similar tendency for completion time

Independent Task

Completion time

- Score improvement from Session 1 to 5
- Similar tendency for completion time

Target preference per hand

Independent Task

Completion time

Target preference per hand

- Score improvement from Session 1 to 5
- Similar tendency for completion time

The foot is used to reach the central targets

Dependent Task

Dependent Task

Performance score

Dependent Task

Performance score

Similar tendency than for the Independent Task

Dependent Task

Completion time

Similar tendency than for the Independent Task

Dependent Task

Completion time

Similar tendency than for the Independent Task

Distance to CoM

Dependent Task

Completion time

Similar tendency than for the Independent Task

The foot is further away from the COM than the other limbs

Comparison - Performance

Comparison - Performance

Motion efficiency of 3H

Comparison - Performance

Motion efficiency of 3H

• More efficient for the Dependent Task

Comparison - Performance

Motion efficiency of 3H

- More efficient for the Dependent Task
 - BUT improvement for the Independent Task

Comparison - Performance

Motion efficiency of 3H

- More efficient for the Dependent Task
 - BUT improvement for the Independent Task

Hand coordination

Comparison - Performance

Motion efficiency of 3H

- More efficient for the Dependent Task
 - BUT improvement for the Independent Task

Hand coordination

• More active trimanipulation for the Dependent Task

Comparison - Performance

Motion efficiency of 3H

- More efficient for the Dependent Task
 - BUT improvement for the Independent Task

Hand coordination

- More active trimanipulation for the Dependent Task
 - BUT improvement for both tasks

Comparison - Perception

Comparison - Perception

Independent task– The perceved workload decreased from Session 1 to 5

Summary

- We studied the learning of different trimanual coordinations over 5 weeks
- The type of training impacts the performance and the motion characteristics
- Overall there is improvement with training
- The hands-foot coordination may be the main limiting factor, but it does improve with training

Summary

- We studied the learning of different trimanual coordinations over 5 weeks
- The type of training impacts the performance and the motion characteristics
- Overall there is improvement with training
- The hands-foot coordination may be the main limiting factor, but it does improve with training

Future work

• Expand the study of trimanual coordination to consider other possible control interfaces and tasks

Thank you for your time!

